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The 2e-reduction of 1,12-Ph2-1,12-closo-C2B10H10 followed by

oxidation or metallation gives products that arise from [7,9-Ph2-

7,9-nido-C2B10H10]
22, formed by unexpectedly facile isomerisa-

tion of the kinetic 7,10-isomer: the 4,1,6-MC2B10 compounds

which result are progressively isomerised to 4,1,8- and 4,1,12-

isomers for M = {CpCo} but to an equilibrium mixture of 4,1,8-

and 4,1,12-isomers for M = {(arene)Ru}.

Reduction of the icosahedral carborane C2B10H12 or its derivatives

is a necessary first step in the major synthetic route to

supraicosahedral carboranes and heterocarboranes. The addition

of transition metal fragments1 or main group cations2 to reduced

12-vertex carboranes leads to 13-vertex metallacarboranes, whilst

the addition of boron fragments leads to 13-vertex carboranes.3

Reduction of both 1,2-closo-C2B10H12 (ortho carborane) and

1,7-closo-C2B10H12 (meta carborane) affords the same dianion,

[7,9-nido-C2B10H12]
22,4 whilst reduction of 1,12-closo-C2B10H12

(para carborane) yields [7,10-nido-C2B10H12]
22 (Fig. 1).5 Oxidation

of [7,9-nido-C2B10H12]
22 gives ortho carborane,6 whilst oxidation

of [7,10-nido-C2B10H12]
22 gives meta carborane.7 Reduction of the

C,C-diphenyl derivatives of both ortho and meta carborane also

gives a common product, whilst reduction of 1,12-Ph2-1,12-closo-

C2B10H10 affords a species with a different 13C NMR spectrum.8

We now report evidence that, surprisingly, this reduced form of

diphenyl para carborane easily transforms to the same [7,9-Ph2-

7,9-nido-C2B10H10]
22 dianion that is afforded by reduction of its

ortho and meta analogues. We show that, similarly, [7,10-nido-

C2B10H12]
22 can be transformed to [7,9-nido-C2B10H12]

22 under

THF reflux and that 4,1,6-RuC2B10 species formed by metallation

of [7,9-nido-C2B10]
22 anions will isomerise if sufficiently heated,

but that the ultimate result of such isomerisation is an equilibrium

mixture of 4,1,8- and 4,1,12- forms.

Compound 1, 1,12-Ph2-1,12-closo-C2B10H10, has been known

for a considerable time9 but, surprisingly, its solid-state structure

has not previously been reported.{ Two, practically superimpo-

sable, independent molecules of 1 are found but only one is shown

in Fig. 2.§ Both molecules have crystallographically-imposed Ci

symmetry which requires the Ph rings on each carborane to be

co-parallel.

We prepared 1 in the expectation of being able to synthesise,

from it, C,C-diphenyl derivatives of 4,1,10-MC2B10 metallacarbor-

anes,5 which, following thermal isomerisation to equivalent 4,1,12-

species, we planned to use as precursors to C,C-diphenyl 14-vertex

M2C2B10
11 and, ultimately, higher polyhedra.

However, in our hands 2e-reduction (either Na in liq. NH3 or

Na in THF) of 1 followed by subsequent oxidation or metallation

did not afford products that derive from [7,10-Ph2-7,10-nido-

C2B10H10]
22, but instead gave products that derive from [7,9-Ph2-

7,9-nido-C2B10H10]
22. Thus (i) aerial re-oxidation of the reduced
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Fig. 1 Reduction (R) and subsequent oxidation (O) of ortho-, meta- and

para-carborane.

Fig. 2 Perspective view of molecule A of 1 (50% probability ellipsoids).

Average interatomic distances (Å): C–B 1.725(8), B–B (tropical) 1.777(6),

B–B (equatorial) 1.761(6)."
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species yields only 1,2-Ph2-1,2-closo-C2B10H10 (by 11B NMR

spectroscopy) and (ii) metallation of the reduced species with

[Ru(p-cymene)Cl2]2 affords 1,6-Ph2-4-(p-cymene)-4,1,6-closo-

RuC2B10H10 (2) which we have previously prepared from

metallation of reduced 1,2-Ph2-1,2-closo-C2B10H10 and fully

characterised.12 We have confirmed that 2 is also afforded by

reduction and metallation of 1,7-Ph2-1,7-closo-C2B10H10.

Similarly, addition of CoCl2 and NaCp to the product

of reduction of 1 affords, following CoII A CoIII oxidation on

work-up, the new cobaltacarborane 1,6-Ph2-4-Cp-4,1,6-closo-

CoC2B10H10 (3) (see ESI{). Compound 3 was fully characterised

by mass spectrometry, 11B NMR spectroscopy and single-crystal

X-ray diffraction.§ RT NMR spectra of 3 imply a molecule with

Cs symmetry but the fluctional process by which this is achieved is

well understood.1,12 A perspective view of a single molecule is

shown in Fig. 3.

In a manner similar to that established for the non-arylated

analogues 4-Cp-4,1,6-closo-CoC2B10H12
1 and 4-Cp*-4,1,6-closo-

CoC2B10H12,
13 3 can easily be progressively isomerised by heat,

first to the 4,1,8-isomer (4) then to the target 4,1,12-isomer (5),

both of which were fully characterised (see ESI{).§ However, we

have already noted that the 4,1,6-RuC2B10 species 2 does not

similarly isomerise even in refluxing toluene.12 Thus whilst we had

managed to prepare a C,C-diphenyl 4,1,12-cobaltacarborane, we

appeared to be doubly frustrated in our attempts to prepare the

analogous ruthenacarborane: its logical precursor,I the 4,1,10-

isomer, is not obtained by metallation of reduced 1,12-Ph2-1,12-

closo-C2B10H10, and what is formed (the 4,1,6-isomer) appears

itself to be resistant to thermal isomerisation.

However, raising the temperature to ca. 180 uC, in tetra(ethylene

glycol) dimethyl ether, successfully isomerises 2 to the new

ruthenacarboranes 1,8-Ph2-4-(p-cymene)-4,1,8-closo-RuC2B10H10

(6) and 1,12-Ph2-4-(p-cymene)-4,1,12-closo-RuC2B10H10 (7).**

Compound 6 and 7 were characterised both spectroscopically

(see ESI{) and crystallographically,§ and views of single molecules

are given in Fig. 4 and Fig. 5, respectively.

In contrast, however, to the sequential 4,1,6 A 4,1,8 A 4,1,12

isomerisation of both the C,C-arylated and non-arylated forms of

the 13-vertex cobaltacarborane, isomerisation of the ruthenacar-

borane 2 affords an equilibrium mixture of 6 and 7. After 6 h at

180 uC the ratio is ca. 2 : 1, respectively. Heating either pure 6 or

pure 7 separately at 180 uC ultimately yields a 1 : 5 ratio of 6 and 7

after ca. 24 h.

All five new metallacarboranes (compounds 3–7) have docosa-

hedral MC2B10 cages similar to that of the archetypal 13-vertex

species 4-Cp-4,1,6-closo-CoC2B10H12
1,15 featuring relatively long

connectivities involving the degree-6 vertex B5. B5–B3 is

particularly long, ca. 2 Å.

The formation of 1,2-Ph2-1,2-closo-C2B10H10 by the oxidation

of reduced 1, and the isolation of 4,1,6-MC2B10 species from the

metallation of reduced 1, could be interpreted in one of two ways.

Fig. 3 Perspective view of 3 (50% probability ellipsoids). Selected

interatomic distances (Å): Co4–C1 2.038(3), Co4–B2 2.193(4), Co4–C6

2.187(3), Co4–B10 2.124(4), Co4–B7 2.183(4), Co4–B3 2.196(4), Co4–

C(Cp) 2.031(4)–2.082(3), B5–C1 1.772(5), B5–B2 1.988(5), B5–B9 1.903(6),

B5–B11 1.802(6), B5–B8 1.898(6), B5–B3 2.028(6), C1–C11 1.500(4), C6–

C61 1.516(4).

Fig. 4 Perspective view of 6 (50% probability ellipsoids). Selected

interatomic distances (Å): Ru4–C1 2.168(6), Ru4–B2 2.309(7), Ru4–B6

2.308(7), Ru4–B10 2.266(7), Ru4–B7 2.242(7), Ru4–B3 2.280(7), Ru4–

C(cymene) 2.206(6)–2.290(6), B5–C1 1.724(9), B5–B2 2.042(10), B5–B9

1.876(10), B5–B11 1.814(10), B5–C8 1.887(10), B5–B3 1.969(11), C1–C11

1.512(8), C8–C81 1.525(8).

Fig. 5 Perspective view of 7 (50% probability ellipsoids). Selected

interatomic distances (Å): Ru4–C1 2.186(6), Ru4–B2 2.288(7), Ru4–B6

2.245(7), Ru4–B10 2.247(7), Ru4–B7 2.281(7), Ru4–B3 2.307(7), Ru4–

C(cymene) 2.190(6)–2.310(6), B5–C1 1.784(9), B5–B2 2.037(9), B5–B9

1.886(9), B5–B11 1.760(10), B5–B8 1.891(10), B5–B3 2.037(10), C1–C11

1.514(8), C12–C121 1.516(8).
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Either reduction of 1 proceeds differently to that of 1,12-closo-

C2B10H12 (in contrast to previously published reports8) or the

[7,10-Ph2-7,10-nido-C2B10H10]
22 anion formed converts to the 7,9-

form before oxidation or metallation takes place. To investigate

this we reduced 1,12-closo-C2B10H12 and heated the [7,10-nido-

C2B10H12]
22 anion known to form5 at THF reflux. Subsequent

metallation with [Ru(p-cymene)Cl2]2 yields the known compound

4-(p-cymene)-4,1,6-closo-RuC2B10H12.
11 This suggests that reduc-

tion of 1 does indeed produce [7,10-Ph2-7,10-nido-C2B10H10]
22,

but that this is only a kinetic form and easily transforms (at or

below room temperature) to the 7,9-isomer, ultimately captured by

oxidation or metallation (Fig. 6). The reasons for the apparent

thermodynamic preference of [7,9-nido-C2B10]
22 over [7,10-nido-

C2B10]
22 dianions are not intuitively obvious, and will be the

subject of future investigation.14
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Notes and references

{ However the structure has been previously determined. See ref. 1 of Fox
et al.10 We thank Mark Fox for details of his unpublished work.
§ Crystal data: for 1: C14H20B10, M = 296.40, monoclinic, P21/c, a =
11.560(3), b = 7.3833(17), c = 19.199(4) Å, b = 93.339(12)u, V =
1635.9(7) Å3, Z = 4 (2 independent half-molecules), Dc = 1.203 Mg m23,
m = 0.059 mm21, F(000) = 616. Data to hmax = 26.37u collected at 100(2) K
on a Bruker X8 diffractometer using Mo-Ka radiation. 3328 out of 26728
independent reflections, R1 = 0.0957, wR2 = 0.2614, S = 1.099 for data with
I . 2s(I).

For 3: C19H25B10Co, M = 420.42, monoclinic, P21/n, a = 7.9865(15),
b = 16.119(3), c = 15.593(2) Å, b = 96.559(7)u, V = 1994.3(6) Å3, Z = 4,
Dc = 1.400 Mg m23, m = 0.865 mm21, F(000) = 864. Data collection as for
1 except hmax = 23.37u. 2878 out of 22792 independent reflections, R1 =
0.0387, wR2 = 0.0681, S = 1.036 for data with I . 2s(I).

For 4: C19H25B10Co?KC6H14, M = 463.50, monoclinic, P21/c, a =
8.782(3), b = 19.357(7), c = 15.252(5) Å, b = 101.266(16)u, V =
2543.0(15) Å3, Z = 4, Dc = 1.211 Mg m23, m = 0.684 mm21,

F(000) = 964. Data collection as for 1 except hmax = 20.68u. 2566 out of
20710 independent reflections, R1 = 0.0829, wR2 = 0.2108, S = 1.170 for
data with I . 2s(I).

For 5: C19H25B10Co, M = 420.42, monoclinic, P21/n, a = 12.0447(8), b =
12.6676(8), c = 13.8241(8) Å, b = 104.129(16)u, V = 2045.4(2) Å3, Z = 4,
Dc = 1.365 Mg m23, m = 0.843 mm21, F(000) = 864. Data collection as for
1 except hmax = 30.73u. 6327 out of 30880 independent reflections, R1 =
0.0468, wR2 = 0.0985, S = 0.972 for data with I . 2s(I).

For 6: C24H34B10Ru, M = 531.68, monoclinic, P21, a = 9.3596(8), b =
8.7670(9), c = 15.4785(15) Å, b = 96.803(5)u, V = 1261.2(2) Å3, Z = 2, Dc =
1.400 Mg m23, m = 0.635 mm21, F(000) = 544. Data collection as for 1
except hmax = 24.32u. 3972 out of 20080 independent reflections, R1 =
0.0388, wR2 = 0.0895, S = 1.058, x = 20.02(5) for data with I . 2s(I).

For 7: C24H34B10Ru, M = 531.68, monoclinic, C2/c, a = 21.144(4), b =
13.209(2), c = 18.065(3) Å, b = 100.439(8)u, V = 4961.6(15) Å3, Z = 8, Dc =
1.424 Mg m23, m = 0.645 mm21, F(000) = 2176. Data collection as for 1
except hmax = 23.34u. 3583 out of 27682 independent reflections, R1 =
0.0425, wR2 = 0.0924, S = 0.963 for data with I . 2s(I).

CCDC 631512–631517. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b618556h

I The compound 4-(p-cymene)-4,1,10-closo-RuC2B10H12 isomerises quan-
titatively to 4-(p-cymene)-4,1,12-closo-RuC2B10H12 in refluxing toluene. See
ref. 5.
** The non-phenylated analogue of compound 2, 4-(p-cymene)-4,1,6-closo-
RuC2B10H12, similarly isomerises at 180 uC.14
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Fig. 6 Reduction (R), oxidation (O) and metallation ({M}) of the

C,C-diphenyl derivatives of ortho-, meta- and para-carborane.

" E.s.d.s of the mean of N independent observations given by the
expression s2 = {gi¼N

i¼1 (xi 2 )2}/(N – 1) where xi is the ith and the mean
value. Tropical B–B distances are those between B atoms connected to the
same C atom, whilst equatorial B–B distances are between B atoms
connected to different C atoms.
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